Beneficial Effects of Exendin-4 on Experimental Polyneuropathy in Diabetic Mice
نویسندگان
چکیده
OBJECTIVE The therapeutic potential of exendin-4, an agonist of the glucagon-like peptide-1 receptor (GLP-1R), on diabetic polyneuropathy (DPN) in streptozotocin (STZ)-induced diabetic mice was investigated. RESEARCH DESIGN AND METHODS The presence of the GLP-1R in lumbar dorsal root ganglion (DRG) was evaluated by immunohistochemical analyses. DRG neurons were dissected from C57BL6/J mice and cultured with or without Schwann cell-conditioned media in the presence or absence of GLP-1 (7-37) or exendin-4. Then neurite outgrowth was determined. In animal-model experiments, mice were made diabetic by STZ administration, and after 12 weeks of diabetes, exendin-4 (10 nmol/kg) was intraperitoneally administered once daily for 4 weeks. Peripheral nerve function was determined by the current perception threshold and motor and sensory nerve conduction velocity (MNCV and SNCV, respectively). Sciatic nerve blood flow (SNBF) and intraepidermal nerve fiber densities (IENFDs) also were evaluated. RESULTS The expression of the GLP-1R in DRG neurons was confirmed. GLP-1 (7-37) and exendin-4 significantly promoted neurite outgrowth of DRG neurons. Both GLP-1R agonists accelerated the impaired neurite outgrowth of DRG neurons cultured with Schwann cell-conditioned media that mimicked the diabetic condition. At the doses used, exendin-4 had no effect on blood glucose or HbA(1c) levels. Hypoalgesia and delayed MNCV and SNCV in diabetic mice were improved by exendin-4 without affecting the reduced SNBF. The decreased IENFDs in sole skins of diabetic mice were ameliorated by exendin-4. CONCLUSIONS Our findings indicate that exendin-4 ameliorates the severity of DPN, which may be achieved by its direct actions on DRG neurons and their axons.
منابع مشابه
Exendin-4 Reduces Ischemic Brain Injury in Normal and Aged Type 2 Diabetic Mice and Promotes Microglial M2 Polarization
Exendin-4 is a glucagon-like receptor 1 agonist clinically used against type 2 diabetes that has also shown neuroprotective effects in experimental stroke models. However, while the neuroprotective efficacy of Exendin-4 has been thoroughly investigated if the pharmacological treatment starts before stroke, the therapeutic potential of the Exendin-4 if the treatment starts acutely after stroke h...
متن کاملGlucagon-like peptide 1, insulin, sensory neurons, and diabetic neuropathy.
Like insulin, glucagon-like peptide 1 (GLP-1) may have direct trophic actions on the nervous system, but its potential role in supporting diabetic sensory neurons is uncertain. We identified wide expression of GLP-1 receptors on dorsal root ganglia sensory neurons of diabetic and nondiabetic mice. Exendin-4, a GLP-1 agonist, increased neurite outgrowth of adult sensory neurons in vitro. To dete...
متن کاملCombination of omeprazole with GLP-1 agonist therapy improves insulin sensitivity and antioxidant activity in liver in type 1 diabetic mice.
BACKGROUND Combination with suitable pharmacological agents can improve the antiobesity and antidiabetic actions of glucagon like peptide-1 (GLP-1) based therapies. GLP-1 agonist exendin-4 may have insulin-independent effects on amelioration of insulin resistance and hepatic steatosis by virtue of its action on hepatic GLP-1 receptors, and these effects can be improved by combination with proto...
متن کاملExendin-4 Improves Blood Glucose Control in Both Young and Aging Normal Non-Diabetic Mice, Possible Contribution of Beta Cell Independent Effects
AIMS Type 2 diabetes is highly prevalent in the elderly population. Glucagon like Peptide-1 mimetic such as exendin-4 augments post-prandial insulin secretion. However, the potential influence of aging on the therapeutic effects of this peptide has not been well studied. In this study, we examined the glucose regulatory effects of exendin-4 in mice with different ages. METHODS We treated 3-mo...
متن کاملExendin-4 alleviates high glucose-induced rat mesangial cell dysfunction through the AMPK pathway.
BACKGROUND/AIMS Glucagon-like peptide-1 (GLP-1), which counteracts insulin resistance in humans with type 2 diabetes, has been shown to ameliorate diabetic nephropathy in experimental models. However, the mechanisms through which GLP-1 modulates renal function remained illdefined. The present study investigated the putative mechanisms underlying effects of exendin-4, a GLP-1 analog, on mesangia...
متن کامل